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A growing two-dimensional cell model is defined as follows. In an area there are Poisson- 
distributed nuclei. Arising from these nuclei, grains start to grow simultaneously. All grains grow 
circularly with the same constant radial growth rate ,/7. During the process of growth no new 
nuclei are formed. If two grains touch each other, growth is stopped there by formation of 
a straight grain boundary. We arbitrarily put a straight line, called Rosiwal's line, into the area. 
While grains are growing many straight grain boundaries and circular growth fronts cross 
Rosiwal's line. At a fixed fraction transformed, F( = crystallized area/total area), we consider the 
different extension rates of growth fronts (growing borders) along Rosiwal's line, v(R <~ v < 0o ), 
in the left (or right) direction. The number of grains that have a growth front along Rosiwal~s line 
into the left (or right) direction depends on F. Although the number changes with variation of F, 
we obtained theoretically the surprising result that the distribution density of reduced extension 
rates V= v/Ft, w(V), does not depend on F, and is always V - 2 ( V  2 - -  1) -1/2. In order to verify this 
result we found an experimental possibility to realize the growing two-dimensional cell model. 

1. I n t r o d u c t i o n  
At time-point to nuclei are assumed Poisson-distri- 
buted in an area with mean nucleus density n, the 
number of all nuclei in the whole area divided by the 
area. If t > to no new nuclei are formed. Arising from 
these nuclei, grains start to grow simultaneously. Each 
grain grows circularly with the same constant /~. 
Finally, when all grains are grown out, a grain is 
bounded by grain boundaries having the form of poly- 
gons (two-dimensional cell model). These conditions 
yield the definition of the growing two-dimensional 
cell model [1]. 

Fig. 1 shows the picture of an experiment in which 
the two-dimensional cell model at F = 1/2 was realiz- 
ed. Moreover, Fig. 1 shows Rosiwal's line, an arbitra- 
rily placed line, crossed by grain boundaries and (in 
which we have a special interest) by growth fronts that 
have the form of circles or parts of a circle with the 
same grain radius R. The growth fronts extend along 
Rosiwal's line in the left (or right) direction with dif- 
ferent extension rates dependent on the distance be- 
tween the nucleus and Rosiwal's line (Y) and on R. 

Fig. 2 shows the extension rate of a growth front 
along Rosiwal's line which belongs to a grain with 
radius R. The nucleus of this grain is a distance Yfrom 
Rosiwal's line. All growing grains have by definition 
the same radius R. Its relationship with F is given by 
the Avrami relationship F = 1 - exp( - n~RZ), sim- 
ply deduced by Schulze [2]. 

In the first part of this paper we show theoretically 
that the extension rates of growth fronts along 
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Rosiwal's line belong to a distribution density which 
does not depend on F. In the second part we verify this 
result experimentally in a very indirect way. We de- 
scribe the experiment in which we made use of a thin 
foil of polypropylene to realize the two-dimensional 
cell model. 

2. Theory  [3]  
2.1. Distribution of V 
According to Fig. 2, we obtain 

X = ( g  2 - -  y 2 ) 1 / 2  

and the extension rate of the growth front along 
Rosiwal's line v = 2 is for a given Y 

v = yc = R R / ( R  2 -  y 2 ) 1 / 2  

= /~/[1 - (Y/R)2] 1/2 (1) 

The solution for Y yields 

Y = R ( V  z - 1)1/2/V (2) 

where V = v/1~ is the reduced extension rate of growth 
fronts along Rosiwal's line. d Y/d V yields, for a fixed R, 

1 d V  
- -  d Y  = (3 )  
R V 2 ( V  z -- 1) 1/2 

From Equation 3 

w ( V )  = I / V 2 ( V  2 - 1) 1/2 (4) 

w(V)  being the distribution density of the reduced 
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Figure 1. Micrograph of a growing two-dimensional cell model at F = l/2, On Rosiwal's line there are random lengths through the 
undercooled melt (a) and through the grains (b). b is classified into three types: type 3 limits on both sides on grain boundaries, type 2 limits on 
one side on grain boundary and type 1 limits on no side on grain boundaries. 
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Figure 2. The reduced velocity (V) of a grain of grain radius R and 
nucleus distance Y from Rosiwal's line. The constant radial growth 
rate/~ = G is assumed to be unity. 

extension rates of growth fronts along Rosiwal's line 
(V, with 1 ~< V~< oo). 

Fig. 3 shows w(V), and is 

fv w(V)dV = 1 
= 1  

Fig. 3 as a step-diagram with z~ V = 0.1 is given by the 
dotted line in Fig. 8 (below). 

2.2. N u c l e u s  dens i ty ,  q 
In order to reduce the following theoretical deduc- 
tions we introduce a "length unit". We choose one 
length unit of such a length that n is one nucleus per 
(length unit) 2. 

We will prove that the nucleus density of those 
nuclei whose grains can grow at a fixed R to the left (or 
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Figure 3. Distribution density w(V) of the reduced rate. The area 
V2 between V~ and V 2 (the integral ~vl w(V) d V) gives the fraction of all 

nuclei that lie between V~ and V2. 

right) direction on Rosiwal's line is constant and is 
exp( - ~R2). Of course, this constancy of the nucleus 
density is given only within a band along Rosiwal's 
line of breadth 2 R ( - R ~ <  Y~<R) and length oo, 
otherwise, it is zero. 

We call a nucleus type 1 if its grain grows in both 
directions on Rosiwal's line. A nucleus is called type 2a 
if its grain grows to the left on Rosiwal's line but to the 
right it is grown together with another grain. The 
grains of types 1 and 2a with grain radius R are all of 
the grains that grow in the left direction on Rosiwal's 
line. 
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Fig. 4 shows a grain of type 1 with chord intercept b. 
The chord intercept can grow if no nucleus lies within 
the area S = SL + SR = 2SL of Fig. 5. Since by defini- 
tion the nuclei are Poisson-distributed with density 
one nucleus per (length unit) z , the probability of find- 
ing no nucleus within area S [2] is 

q~(Y;R) = expE - S(Y,R)] (5) 

Therefore, q l(Y; R) also gives the nucleus density to 
find a grain of type 1 at (Y; R). 

The relationships for a grain of type 2a are shown in 
Fig. 6. Since the left-hand side of b grows, the area of 
the circle around XL must not contain any nucleus. 
This probability is exp ( - S~i~ol~). Since the right-hand 
side of b is grown out, area S~o~t must contain at least 
one nucleus. This probability is 1 -  e x p ( -  S~t). 
Consequently, the probability of the area 

~ n dercooled melt 

/ N (X, Y) ~" Growth front 

XL ~ X R  

I - b - - - ~  

Figure 4. Nucleus N(X, Y) is of type 1. Xc and XR are the borders 
between the grain and the undercooled melt. Y is the distance 
between the nucleus and Rosiwal's line. R is the radius of all 
growing grains. 
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S = Scircle Jr- Srest is 

qz.(Y; R) = e x p ( -  Sc~rclo)[1 -- e x p ( -  S~e~d] 

= e x p ( -  S~i~ol~) 

- exp [ -  (Sr + Srest)] 

= e x p ( -  S~d~) -- q~(Y;R) (6) 

If we consider only the grains possessing a growth 
front into the left-hand direction on Rosiwal's line, we 
can calculate the probability of their nucleus density 
ql + 2a(R): 

q~+2a(R) = qa(Y;R) + q2a(Y;R) 

= exp( - S c i r c l e  ) 

q~+z~(R) = e x p ( -  ~R z) (7) 

Accordingly, the nucleus density of grains that grow in 
the left direction on Rosiwal's line, ql+za, depends 
only on R and not on Y. Therefore, for each Y within 
- R < Y < R, ql +za is constant, and elsewhere it is 

zero. The constant nucleus density is equal to 
exp( - ~RZ). 

2.3. Number of grains, N 
The number (N) of grains that grow to the left-hand 
side at one length unit on Rosiwal's line in dependence 
on R, is 

2fy ~ f x~ N(R) = q~ + za(R) dx d Y 
= 0  d X = X O  

N(R) = 2 e x p ( -  rtR z) dY 
= 0  

N(R) = 2 R e x p ( -  rtR 2) (8) 

Fig. 7 shows N(R). The maximum of N(R) is reached 
at R = 0.4 ~ F. 

3.  E x p e r i m e n t  
We used a foil of polypropylene (from Hoechst AG) of 
thickness 4 gm and area A of about 15 mm x 35 mm. 
Its molecular weight was 300000 and its isotacticy 

Figure 5. The area S e + SR must  not  contain any nucleus in order 
for b (type 1) to grow. 
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Figure 6. Type 2a yields: area Sc~rcJe must  not contain any nucleus, 
and area Sre~t must  contain at least one nucleus. 
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Figure 7. The number of grains 2R exp( -- =R z) that grow to the 
left-hand side on Rosiwal's line referred to one length unit in 
dependence on R. 
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96%. No stabilizers existed in the product.  In the heat 

t reatment  the temperature  was decreased from 200 to 

138 ~ in an undercooled state, because the melt ing 
point  was 168 ~ Then  the temperature  was decreased 

for 1 min  to 125 ~ at which temperature  nuclei were 

formed. We then increased the temperature  to 138 ~ 

at wh ich  the grains grow but  no new nuclei are for- 
med. Fig. 1 shows the growth of spherulites (grains) at 

F = 1/2. Finally,  when all grains were grown out, we 
decreased the temperature  to 20 ~ Then  we counted 

the n u m b e r  of all nuclei (M) in area A. Hence, we 
obta ined  the nucleus density M/A (number  m m -  2). In  

order to normalize to a nucleus density of one nucleus 
per (length unit) 2, all measured lengths (ram) were 

t ransformed by mul t ip l ica t ion by the factor (M/A) 1/2. 
In the experiment  we obta ined  a mean  nucleus density 

of 7.6 nuclei r a m -  2. Hence, we calculated 1 length uni t  
= 7.6-1/2 mm. 

We used an M M  10 microscope in c o m b i n a t i o n  
with a N ikon  micrometer  stage to measure to an 

accuracy of 1 gm the co-ordinates (x, Y) of all nuclei 
the grains of which reached Rosiwal's line. We then 

t ransformed all measured nuclei co-ordinates.  A fixed 
grain radius of R = 0.4 length units was chosen be- 
cause at this R the n u m b e r  of grains that grow in the 

left direction on Rosiwal's line, N(R), has a maximum.  
Fur thermore ,  we could dist inguish the co-ordinates of 
nuclei that  belong to type 1 and  type 2a grains at 
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Figure 8. Fig. 3 as a histogram: ( . . . . .  ) theoretical values and 
( - - )  experimental values. 

R = 0.4 length units. These co-ordinates (x, Y) are 

listed in the quant i ty  I Y] with 0 ~< ]Y] ~< 0.4. 

F rom Equa t ion  2 every Y/R is associated with V. 
The V-intervals 1.0-1.1, 1.1-1.2 . . . . .  3.9-4.0 belong 

to the Y-intervals presented in Table I. We then 
counted  the nuclei that lay within the Y-intervals. We 
divided this by all nuclei at R = 0.4 in order to nor-  

malize the counted nuclei, finally ob ta in ing  the histo- 
gram shown in Fig. 8. 

The zZ-test showed a significance of c~ = 10% [4]. 

TABLE I 

V1 V2 111 112 AY Measured no. AY/R, R = 0.4 N/1680 
of nuclei, N 

1.0 1.1 0 0.1680 0.1680 731 0.4200 0.4351 
1.1 1.2 0.1680 0.2229 0.0549 220 0.1262 0,1310 
1.2 1.3 0.2229 0.2577 0.0348 150 0.0870 0.0893 
1.3 1.4 0.2577 0.2822 0.0246 119 0.0615 0,0708 
1.4 1.5 0.2822 0.3006 0.0183 82 0.0457 0,0488 
1.5 1.6 0.3006 03148 0.0142 68 0.0355 0.0488 
1.6 1.7 0.3148 0.3261 0.0113 40 0.0283 0.0238 
1.7 1.8 0.3261 0.3353 0.0092 45 0.0230 0.0268 
1.8 1.9 0.3353 0.3429 0.0076 40 0.0190 0.0238 
1.9 2.0 0.3429 0.3492 0.0063 33 0.0158 0.0196 
2.0 2.1 0.3492 0.3546 0.0054 20 0.0135 0.0119 
2.1 2.2 0.3546 0.3592 0.0046 22 0.0115 0.0131 
2.2 2.3 0.3592 0.3631 0.0039 17 0.0098 0.0101 
2.3 2.4 0.3631 0.3666 0.0035 10 0.0087 0.0059 
2.4 2.5 0.3666 0.3696 0.0030 12 0.0075 0.0071 
2.5 2.6 0.3696 0.3722 0.0026 9 0.0065 0.0054 
2.6 2.7 0.3722 0.3746 0.0024 7 0.0060 0.0042 
2.7 2.8 0.3746 0.3766 0.0020 12 0.0050 0.0071 
2.8 2.9 0.3766 0.3785 0.0019 7 0.0048 0.0042 
2,9 3.0 0.3785 0.3802 0.0017 1 0.0043 0.0006 
3.0 3.1 0.3802 0.3817 0.0015 11 0.0038 0.0065 
3,1 3.2 0.3817 0.3830 0.0013 6 0.0033 0.0036 
3.2 3.3 0.3830 0.3843 0.0013 4 0.0033 0.0024 
3.3 3.4 0.3843 0.3854 0.0011 5 0.0028 0.0030 
3.4 3.5 0.3854 0.3864 0.0010 2 0.0026 0.0012 
3.5 3.6 0.3864 0.3874 0.0010 0 0.0026 0.0000 
3.6 3.7 0.3874 0.3882 0.0008 3 0.0020 0.0018 
3.7 3.8 0.3882 0.3890 0.0008 0 0.0020 0.0000 
3.8 3.9 0.3890 0.3898 0.0008 1 0.0020 0.0006 
3.9 4.0 0.3898 0.3904 0.0006 3 0.0015 0.0018 

ZN= 1680 
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4. Summary 

The nucleus density of grains that grow on Rosiwal's 
line in the left-hand direction is constant at a fixed 
R within - R ~< Y ~< R. For this reason the distribu- 
tion density w(V) of Equation 4 is also valid in the 
case of R = 0.4 length units. This case was verified 
experimentally. 

For the V-intervals 1.0-1.1 . . . . .  3.9-4.0 we ob- 
tained Y-intervals in which we counted the measured 
nuclei. The counted nuclei were divided by the sum of 
all nuclei the grains of which reached Rosiwal's line in 
order to normalize them. Fig. 8 shows the theoretical 
(dotted) and the experimental (drawn) histogram, 
which are in a good agreement. The )~2-test showed 
a significance of c~ = 10%. 

In addition, this has proved that the nuclei of the 
15 mm x 35 mm area are Poisson-distributed [5]. This 
was the supposition for our derivation of q l + z a ( R ) .  

References 
1. J .L .  MEIJERING,  Philips Res. Rep. 8 (1953) 270. 
2. G . E . W .  SCHULZE,  Acta Metall. 33 (1985) 239. 
3. G . E . W .  SCHULZE,  L. O. SCHWAN and R. WILLERS, J. 

Mater. Sci. 24 (1989) 3107. 
4. P .H .  MULLER,  T. N E U M A N N  and R. STORM, in "Tafeln 

der Mathematischen Statistik" (Fachbuchverlag, Leipzig, 1973) 

p. 123. 
5. G . E . W .  SCHULZE and H.-P. WILBERT, Z. Metallkde. 82 

(1991) 713. 

Received 4 November 1991 
and accepted 2 September 1992 

21 28 


